Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
3.
Nat Ecol Evol ; 1(11): 1639-1642, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28970481

ABSTRACT

The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.


Subject(s)
Biodiversity , Forests , Grassland , Ecosystem
4.
Environ Manage ; 56(5): 1148-58, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26105971

ABSTRACT

Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.


Subject(s)
Conservation of Natural Resources , Forestry/methods , Forests , Mimosa/physiology , Biodiversity , Brazil , Introduced Species , Population Dynamics , Species Specificity , Trees/physiology , Tropical Climate
5.
Biota neotrop. (Online, Ed. port.) ; 14(2): 1-9, 30/abr. 2014. tab, graf
Article in English | LILACS | ID: lil-712693

ABSTRACT

Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State - Brazil to develop allometric equations to estimate tree biomass of indigenous tree species in mixed plantations. Above and below-ground biomass (AGB and BGB, respectively), stem diameter (DBH: diameter at 1.3 m height), tree height (H: total height) and specific wood density (WD) were measured for 60 trees of 19 species. Different biomass equations (linear and nonlinear-transformed) were adjusted to estimate AGB and BGB as a function of DBH, H and WD. For estimating AGB and BGB, the linear biomass equation models were the least accurate. The transformed nonlinear biomass equation that used log DBH2, log H and log WD as predictor variables were the most accurate for AGB and the transformed nonlinear biomass equations that used log DBH2*WD as predictor variables were the most accurate for BGB. It is concluded that these adjusted equations can be used to estimate the AGB and BGB in areas of the studied project. The adjusted equations can be recommended for use elsewhere in the region for forest stands of similar age, tree size ranges, species composition and site characteristics.


A restauração da Mata Atlântica vem recebendo aumento na atenção por causa do papel na conservação da biodiversidade e sequestro de carbono para a mitigação da mudança global do clima. Este estudo foi conduzido em um projeto de restauração da Mata Atlântica na região centro-sul do Estado de São Paulo - Brasil e buscou desenvolver equações alométricas para estimar a biomassa arbórea de espécies nativas em plantios mistos. Em 60 árvores de 19 espécies foram medidas a biomassa acima e abaixo do solo, o diâmetro do tronco (DAP: diâmetro a 1,3 m de altura), altura (H) e densidade específica da madeira (Ds). Diferentes equações de biomassa (linear e não linear) foram ajustadas para estimar a biomassa acima e abaixo do solo, utilizando DAP, H e Ds como variáveis preditoras. As equações de biomassa lineares foram as menos acuradas para a estimativa da biomassa acima e abaixo do solo. As equações de biomassa não lineares que usaram log DAP2, log H e log Ds como variáveis preditoras foram mais acuradas para a estimativa da biomassa acima do solo e as não lineares que usaram log DBH2*WD como variáveis preditoras foram as mais acuradas para a estimativa da biomassa abaixo do solo. Conclui-se que estas equações ajustadas podem ser usadas na estimativa da biomassa acima e abaixo do solo nas áreas do projeto estudado. Também pode ser considerado o uso destas equações ajustadas em outras áreas restauradas da Mata Atlântica com idade do povoamento, classes de tamanho das árvores, composição de espécies e características das áreas similares ao deste estudo, desde que árvores sejam avaliadas para verificar a eficácia da equação a ser usada.

6.
Science ; 310(5754): 1628-32, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16339437

ABSTRACT

The current scale of deforestation in tropical regions and the large areas of degraded lands now present underscore the urgent need for interventions to restore biodiversity, ecological functioning, and the supply of goods and ecological services previously used by poor rural communities. Traditional timber plantations have supplied some goods but have made only minor contributions to fulfilling most of these other objectives. New approaches to reforestation are now emerging, with potential for both overcoming forest degradation and addressing rural poverty.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forestry , Trees , Tropical Climate , Agriculture , Biodiversity , Rural Population , Trees/growth & development , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...